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A two-dimensional cellular automaton model is introduced to deal with the dynamics of a finite system of
particles whose interactions are simulated by two-body step potentials. The method is illustrated for a potential
approximating the standard Lennard-Jones potential, representative for the problem of heavy ion collisions in
nuclear physics. From the cellular automaton dynamics thermodynamic equibrium state variables are intro-
duced in the usual way. The numerical experiments indicate the occurrence of a phase transition. Macroscopi-
cally the transition is marked by a singularity in the equation of state; microscopically it manifests itself by the
formation of clusters of particles of all sizes, obeying a mass distribution in the form of a power law of
exponent 1.35.S1063-651X%99)04909-0

PACS numbd(s): 05.40—a, 05.45-a, 25.70--z

I. INTRODUCTION in the strict classical context, the particle motions are cha-
otic, of very short Lyapunov timéof the order of the mean
We develop in this paper a multipurpose, multiparametercollision time; accordingly, we are unable in principle to
two-dimensional(2D) cellular automator{CA) scheme de- compute the individual particle trajectories correctly over
vised to deal withN-particle systems. The particles interact macroscopically relevant time scales.
dynamically through radial pair potentials, in accordance The first part of this paper supplies a general discussion of
with classical mechanics. In the present version the particlesur CA method. Besides the specific CA schematizatitisr
themselves are conserved in the interaction; we anticipate&rete time, cellular space, number of velocity states equal to
however, that reaction processes could be added withodwhe number of neighborhood cells, and Fermion-type exclu-
complicating the formulation in any basic way. The CA ap-sion principle, the following additional ingredients enter our
proach may be viewed as a discretized version of classicghodel: (i) The calculations are two-dimensional; the par-
molecular dynamic$CMD), with the difference that several ticles are confined to a fixed “volume(an area of the cel-
quantum-mechanical effects are introducedclusion prin-  |ylar lattice). (i) Two-body interactions are taken into ac-
ciple, quantum-mechanical scatteringike the latter, the count, in the form of a multistep potentiglii) Scattering
CA approach lends itself to direct dynamical calculationsprobabilities are obtained quantum mechanically, from the
from which statistical properties may be derived. In partiCU-po’[entia| discussed undeii) above. (iv) Thermodynamic
lar, thermodynamic properties may be obtained, providegroperties are derived following the methods[®F.
that the conditions of thermal equilibrium are observed to be |n the Sec. V we illustrate the approach by a specific
satisfied. The main advantage of the CA scheme with respegfuclearN-body problem{1], which serves the main purpose
to CMD lies in its algorithmic simplicity. This implies in  of demonstrating the efficiency of the approach. We analyze
turn that the CA calculations are less time consuming, ancdthe question of heavy ion collisions and the subsequent
therefore, they lend themselves to investigations of broagyclear fragmentation. The method enables us to recover
parameter ranges, which can be explored with a smalyualitatively known resultg§power law of the nuclear frag-
enough step. This point is of relevance in particular whenments; it also suggests a phase transition towards the forma-
phase transitions and other parameter-dependent phenomefish of “clusters” of nucleons of different sizes. Since the
are to be investigated. The price to be paid for the increase qfalculations are two-dimensional, the results are not directly

computational efficiency is a decrease in the precision of thguantitatively comparable with actual experiments.
the individual particle trajectories. By the very construction

of the CA framework the latter are not meaningful individu-

ally, but the statistical features of the ensemb_le 'of particles Il. CA FRAMEWORK OF THE MODEL—

are properly represented. To some extent, a similar observa- THE LATTICE PAIR INTERACTION

tion also holds for CMD; on the one hand, the trajectories of

the particles in the treatment of CMD are not meaningful In our model, time is measured by an integer multipté
either, since the particles should be treated as quantuna basic time ste@ 7. The cellular space adopted is a regular
mechanical objects in the first place; on the other hand, evehexagonal lattice space; the length of a side of a cell is re-
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defined byr;+lg, i=1,2, ... ,6;denote byR,(r;) a second
ring of next-nearest neighbor cells;+2lg and r;+lg
+le_4,i=1,2,...,6(0 identified with §, surrounding the
first ring, etc.(Fig. 1).

The interaction potential between a pair of partidlds j,
andk being indifferentcells, is represented by

Vpair(|rj _rk|;p):Vs if

reeRg(ry); s=123...5S+1,...; (2

Vi, Vo, ... Vs, Vg1, ... are adjustable parameters. In
practice the interactions are of finite range, so that we then
haveV¢,=0 if s>S. The argumenp denotes the number of
different pairs contained in the central cejl (allowed val-
ues:p=1, 3, 6, 10, 15, and 21if the cell contains more
than one particle; such a situation will be referred to as a
“collision state.” While irrelevant if particleg andk are in
different cells, this parameter becomes important when both
particles are in the same cell; it enables us to simulate short-
A lattice particle, at time and in cellr, may be viewed as distance interactions with an improved precision. In case cell

being smeared out over the cell, or, alternatively as a poin'EJ' IS In ﬁl collision tstate, with both particigsandk in the
occupying the cell center. It exists in one among seven mo=amecellr, we se
mentum states: a particle is either at retate 0) or it is in Vo (I —rdp)=V if ro=r. 2
a state of motion with a reference spdefiin a directione pail[1 = Tkl:P)=Voop K 23
from the center of the cefl it occupies to the center of one whereV, 0, P=1,3, 6, 10, 15, and 21 is again a collection
of the six contiguous cellgposition vectors +1e); the di-  of six extra adjustable parameters.
rections e are labeled counterclockwise by the inteder  The total potential acting on a partigleat siter; will be
=1,2,...,6:1=+/3Ax is the distance between the centers ofdenoted byw(r;;p). We have
any pair of contiguous cellg=ig. 1).

The reference speed| is such that in one time step a o .
moving particle is shifted to a contiguous cell, V(| 'p)—gj Voaid [rj =145 p)- Q)

FIG. 1. Effective range of interactions included in CA dynam-
ics: a nucleon in a reference céfrey) interacts with any nucleon
of the reference cell, the first ringvhite cellg, and the second ring
of cells (hatched surrounding the reference cell; unit vectes i
=1,2,...,6,directions of velocities of moving states.

ferred to as the cellsizéx; a cell is identified by the position
vectorr of its center.

The potential acting on a particleat siter; and due to the
particles in the neighboring cells onlyings R ,R,, .. .,
will be denoted by(rj):

Following a convention standard in lattice-gas dynamics
since the work by Hardt al.[3], a formal(computational
exclusion principle is adopted in the form that a spatial site
carries at most one particle of each dynamical state; the num-
ber density allowed in our model then obeys the inequality The total potentialpotential energy per particle masa/
n(r)<7 particles per cell. This principle mimics to some is
extent the actual Pauli exclusion principle, thereby introduc-
ing a quantum-mechanical element into an otherwise classi- W= E
cal model. pairs (j,k)

The model contains a total numbér of identical par-
ticles, of masam. These particles are conserved in the dy-the summation extending over all distinct pairs.

|
V=5 1)

vir)= ER Voaid |1 =1l p)- (33)

ERl, 21

Vpail [Tj—ril:p), (4)

namics. We denote them #;(t) andA(t), the total num- The total kinetic energyper particle magsis
ber of rest and moving particles, respectively, at tiine

- K=3|v|]?A (5)
hence A=A, (t) + Ay (t). 2 m:

Finally, we require the particles to be confined to a finite
region of the lattice, of two-dimensional “volume¥. The
boundary conditions for the particle motions are periodicity

In our nuclear-collision illustration the following numeri-
cal values for the parameters of the potential are adopted:

conditions. _ _ _ V;=-10 MeV, V,=-1 MeV with
In the illustrationA 7 is chosen of the order of the colli-
sion time of nucleons in the bound nucleus10™ %3 s). Ax V=0 for s=3;

is of the order of the range of the nuclear forces2( fm).

The general model pair potential we consider here is de- v/ p=—10+(p—1)6 MeV; p=1,3,6,10,1521.(6)
fined as follows. Let particl¢ occupy a central cell of posi- '
tionr;; denote byR,(r;) a first ring of cells surrounding the With this choice of parameters the potential of a single
central cell; this ring is made up of the cells of positionspair in a cell corresponds to an attraction, while for two pairs
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in a same cell the potential is already repulsive. The distancsubstates; for C ternary, the diffusion probability for our

between adjacent cells is takenlas2.1 fm. numerical parameters is reduced by a factor of the order of
We observe that the potential we adopt for our illustration100, as compared to our binary case; we, therefore, disregard

generalizes the simplest lattice potential so far considered ithis diffusion. For the higher-order collision stat€s as a

the context of nuclear fragmentati¢on a three-dimensional consequence of the exclusion principle, most out channels

cubic lattice by a variety of author$1,4—7], namely, the are closed. Although the diffusion probabiliti€er the nu-

one-parameter potential merical parameters chogdncrease now with the number of
particles per cell, the contribution of these diffusion prob-
Voad|[rj=rl)=—¢€ if re=r;+le, abilities to the dynamics is found to be inefficient. Therefore,
) in the actual computations these probabilities are disre-
i=12,... garded.
Vpair(|rj —r])=0 otherwise. (7) 2. Finite-range collisions

This representation refers to a cubic lattice whose sites are The momentum chang#p of a particle in cellr at time
allowed to carry either zero or one particle; the interactionStept, due to the interactions with the rest of the particles in
potential is nonzero and attractive>0) only if the two the neighboring cell§those in the same cell being treated

particles are in adjacent cells. under Eq.(3.13], is given by a discretized version of New-
ton’s equation of motion
CA EVOLUTION RULES Ap=F(r)A7; 9

Given the CA configuratiorii.e. the states of the collec- ) ) )
tion of all cell§ at time stef, a new configuration, at step F(F) represents the force acting on the particle in cell
t+1 is obtained by updating first all linear momenta, angwhich is d_ue to th_e configuration of all other partlcles at time
then all positions. stept within the ringsR,, Ry, ....Rs. We deflne t_he Car-
The updating of the momenta is ma@® by taking ac- tesian force component at time stem the lattice direction

count of the local collisions and theh) by dealing with the & F;j(r), in terms of the forward difference of the potential
finite range forces. at timet in the directione;, i.e.,

m
A. Collision phase Fi(r)=—IV(r+lg)—V(n], (10
1. Local collisions

A local collision stateC transforms into another allowed WNere the potential at siteis given by Eq.(3a).

local collision stateC' (#C), C—C’, with probability The remainder of the CA-adapted treatment of the force is

Pce=0 per time step, provided that the collision process® simplified version of the algorithm described [i8)]. At

satisfies energy-momentum conservation; the transi@on time stept the p_artlcle has a mom.entupnwh|ch s either O,
—C’ is forbidden,P.¢ =0, if energy—momentum conser- orequal topg, i=12, ..., or_6,W|th p=mv]. The change
vation is violated. The nonzero transition probabilitRgc of mo_mentum|A_p|, over one time stef 7, as given by the
are functions of the parametevs , of the interaction poten- quatl_on of motlorﬁEq. ©), S.hOU|d be small as compargd to
tial. These probabilities are computed by a preliminary stanlp|’ t.h's computatlon'al reqwrement constrains the choice of
dard scattering analysis of particles interacting through poghe_Ume step for a given lattice size. The formal momentum
tential (3a) [8]. at time stepg+1 becomes

In our specific nuclear collision illustration the probabili- ;L o
ties are obtained as follows. @ is a local collision state of P'=p+Ap=pi+p;.
a hexagonal cell, then a different collision sta@é (out
channel exists only if stateC contains one pair of opposite
momenta, say in the directiog (momentae , ¢ . 3=—¢,
i=1, 2, or 3; denote this binary collisiofisubstate byc;
there are then at most two equivalent exit channels, namel
those with opposite momenta in the two directias j =i

(11)

If the momentum at time stefpis nonzero, p=pe), then
the new momentunp’ lies in the angular sectorg(,e)), i
=1,2,...,0r 6,j=i*x1. Represent thep’ as the sum of
the two vectorg; g , p; g directed along the axes, g (Fig.
%); the absolute value gb’ remains close t@, so thatp/

+1, andi—1; we denote these binary states dyandc”. P andp;<p. _ o
The transition probabilitie® . , P.er, andPy., of the pro- If the momentum at stepis zero, then the directions
cesses—c', c—c", andc—c, are related by ande; are chosen to flank the force direction. The right-hand
side of Eq.(11) now represents the vectorial decomposition
Peer=Pse and P,=1-2P.. (8)  of Ap along the skew axes, g ; hence, we havp; <p and

p’<p.
Only one among these three parameters is independent. If Since our CA model has only seven momentum states, we
stateC is a binary State{:c), then the quantum-mechanical have to reset the new momentmﬁ equa| to one of these
diffusion probability for the typical numerical parameters we gdmissible states:
have adopted yieldB .., =0.42.
If Cis a higher-order collision state, we reduce the treat- p’'—p”"=0, (P,) or pe, (Py, k=12,...,6.
ment in a straightforward way to considerations of binary (12)
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the CA simulations. A full thermodynamic description of the
CA gas in its statistically homogeneous phase is thereby di-
rectly accessible in principle.

This homogeneous state is stable provided that the en-
tropy Sis maximum, i.e., provided that

JP
(—) <0 andbounded, ¢,>0 andbounded, etc.
T

ov
3 (14

The violation of a stability condition is indicative that the
FIG. 2. Geometry of finite-range collisions. system ceases to conform to our initial assumption of spatial

homogeneity. The configuration then undergoes a phase tran-
The new state is then selected through transition probabilisition towards an inhomogeneous state.

ties. As a consequence of the small change of momerdasm
compared to the CA momentup) per time step, among the

: . : . A. Equations of state
moving states only statdsandj are actually attainable, so

that we need to specify three probabilities orfiy, (transi- To construct the two required equations of state the CA
tion to rest stateand P;, P; (transition to moving states dynamics of the collection of particles is solved according to
andj, respectively y the following procedure.

With the above procedure the momentum equation cannot A fixed numberA of particles and a fixed “volume (a
be satisfied ifp’ exceeds the CA momentum An exact finite area of the CA latticeare chosen so that the overall
treatment for this alternative is described [@]. We have number densitn=A/v is fixed as well. The system of par-
adapted the latter scheme here in a simplified form. ticles is further given a fixed total enerdy Since the par-
In our heavy ion collision illustration the CA reference ticle mechanics adopted is conservative, the energy remains
momentum takes the valugp=5x10 ®gcms =3 fixed. The statistical equilibrium thereby conforms to a mi-
%1022 MeV fm~1; over one time step the average relative crocanonical equilibrium.

change of momentum i&p/p~0.2 in the experiments. A “thermodynamic run” consists in solving the CA dy-
namics for giverA, v, andE, over a large enough numbér

of time steps. The initial conditions are prepared as follows.
(a) The particles are distributed over the available “volume”
Once all momentum states have been updated by the locgl according to a selected rule of positions,R the initial
and finite-range collision rules, each particle, of new mo-potential energyV/(0) can then be computetb) Each par-
mentump” at time steg + 1 [Eq. (12)], is given a displace- ticle is then assigned a dynamic stétest state O or moving

B. Translation phase

ment in accordance with the equation state 1,2...,6) according to some rule of velocities,&;
" the initial kinetic energyK(0) is thus determined as well.
Ar= p_AT; (13 Accordingly, the total energ is known for the thermo-
m dynamic run.

Suppose that the CA dynamics reaches a state of thermal
equilibrium after®, time steps. The macroscopic thermody-
namic variables are then generated from the corresponding

direction ofp”; if it is in a rest state, then it remains in cell microscopic CA variables via time averaging, indicated by
The computation of the CA configuration at time s&p "y oyer the available statistical equilibrium range,

+1 is completed once all particle positions have been UPhamely, the time interval®,,®). Temperature is the time-
dated. averaged kinetic energy per particle,

a particle in a moving stateis thereby shifted from its cur-
rent position in cellr to the nearest neighbor cell in the

IV. THERMODYNAMIC TREATMENT 1
T=T(Ev,A)= £(K). (15)

We discuss in this section the construction of the thermo-

dynamic properties associated with the CA gas Of.a.ﬁnitePressure is evaluated from tk2D) virial expression
numberA of particles, once the particles are in a statistically '

stationary state. . P=P(E,v,A)=Py+Ppy (16)
We view this gas as a simple one-component homoge-

neous thermodynamic system obeying Callen’s or Tisza'§yith

axiomatics of thermodynami¢40,11. The entropy per par-

ticle, S/A, is then expressible as a function of the internal 1 A

energy per particleE/A, and the volume per particle/A. Pg:V<K>: ;=0 (163
Accordingly, our thermodynamic system is fully determined

if we are given two equations of state, for instance, tempera- 1A A

ture and pressure, as functions of the energy and volume per  _ _ — FOE(T Fo=lr—r
particle, T=T(E/A,v/A)=T(E,v,A) and P=P(E/A,v/A) nee 2y ,Zl g, (rcF(rpd) |2 re=lr=nd

=P(E,v,A). These equations of state are accessible from (16b)
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The componenP;, is the effect of the interactions between teraction componenP;,, becomes dominant, and the pres-
the particled F(rj), force acting between paifj k) along  sureP becomes large.

the directionry,, given by Eq.(2) by a forward difference;  \whether an intermediate range materializes in an actual
for a pair in the same ce{lrjxF(rc)) is given by Eq(2a].  experiment, in which the pressure is measurably less than

If the thermodynamic run is repeated for a rangeéhof, Py, will depend on the values of the parameters of the po-
and E values, a detailed thermodynamic description of thegntial.
equilibrium states of our particle system becomes available
through the equations of sta{s) and(16). V. ILLUSTRATION: NUCLEAR FRAGMENTATION

A. General comments

B. Comments on the thermodynamic model—phase transitions . . . . L
The analysis of heavy ion collisions in nuclear physics in

The typical pair-interaction potentials we have in mind |ower energy range&voiding excitation of the nucleons and
are assumed to be repulsive at small enough interparticlgreation of new particlés[13—17 has raised a number of
distancer, attractive at some larger distance and zero at larggroblems, among which we mention only the following: Can
enough distancef. Eq.(2)]. Provided that the repulsion is the formation of clusters of nucleons following the collision
strong enough for <r ¢, the virial pressure relation in form process be interpreted in terms of a phase transition? Is a
(16b) indicates in the first place that the thermodynamic stathermodynamic phase transition consistent with a power-law
bility conditions may be violated through a singularitgn-  distribution of the fragment&xponent 2.2 in real laboratory
dency to incompressibiliy In fact, take a collection of a experiments?
fixed numberA of particles contained in a cylinder closed by  |n the theoretical treatment we should ideally follow the
a movable piston, and kept at a constant temperafui@®  full dynamics of the heavy ion reaction process. We may
the volumev is decreased, once the density exceeds the critiregard the latter as a sequence of three phdBetie initial
cal number densityn,, at which the average distance of impact of the projectile with the target nucle(s) the shar-
pairs of particles approaches the critical distangg, the  ing of the impact energy among the individual nucleons in a
system of particles tends to become incompressible. “compound nucleus,” possibly followed by a statistical

In the second place, suppose we generate an initial corequilibrium state, andiii) the eventual decay of the com-
figuration of particles randomly distributed over the availablepound nucleus into nuclear fragments.
volume, with a density. Provided that the density is nottoo  Currently adopted theoretical methods concentrate on step
low, a significant fraction of the number of occupied cells (ii) and an incipient phaséii). Phase(ii) is assumed to be
occur in “clusters” of different sizes (collections ofscon-  sufficiently long-lived so that an efficient energy exchange
tiguous nonempty cells Moreover, if the density exceeds a can take place among the individual particles. This step is
critical densitynp, then a percolation phase transition takesinvestigated by two classes of approach.
place in the initial distribution; namely, “percolation clus-  Class(1) procedures are rooted on a first implicit assump-
ters” of arbitrarily large sizes are then formecf. [12]). tion that the system of nucleons, occupying a given available

Let T,,i{n) denote the critical temperature of pair stabil- volume, is in a statistically stationary state; this state can
ity, at which the average kinetic energy per pair is close taherefore be described by standard thermodynamic methods;
the binding energy of a pair. At low enough temperaturesthe statistical mechanics of the systémicrocanonical or
T<T,ai{N), acluster is a dynamically stable physical unit; it canonical ensemblgss then simulated by Monte Carlo tech-
is a physically bound structure; once formed it will continue niques[18-21], or, in the case of simple enough interaction
on average to exist as a stable cluster. Alternatively, at higkchemes, by semianalytical metha@$. [1,4—7,22). Clus-
enough temperature$> T ,,;(n), at every time step clusters ters of nucleons are then isolated by various cluster-
are likewise observable provided only that the density is notdentification algorithmgminimum spanning tree, et§23],
too low (cf. the remarks about the initial statehowever, and a distribution function is derived. The second implicit
these clusters are just geometrical accidents; they are nassumption of the method is that the observed cluster-size
physically bound structures; they form and dissolve againdistribution in the stationary state is identical with the distri-
but in such a way that at any time step a same fraction of theution of the nuclear fragments of stéj), and hence com-
total number of occupied cells belongs to geometrical clusparable with the distribution of real experiments.
ters. Class (2) procedures handle the dynamics of the indi-

Hence the behavior of the pressure can be anticipated. Atidual nucleons on théess stringent than clasg implicit
high temperaturesT>T,.(n) ], the pressurérate of change assumption that initially the nucleons of both colliding nuclei
of momentum of the free components colliding with a unitare randomly distributed over the given volume. The dynam-
“surface”) is manifestly the standard kinetic gas press®ge ics of the individual particles is then followed, for instance,
[Eq. (163], the free components being the individual par-in the framework of CMD[2,24]. The system is found to
ticles; the interaction effed®;,, [Eq. (16b)] is negligible. evolve towards a statistical equilibrium whose global prop-

At lower temperatures and for sufficiently low densities erties are obtained via time averaging. The methods proceed
(n<np the bound clusters play the parts of the free par-as under(1).
ticles; since their number is smaller than the actual number Additional methods have been devised to deal with differ-
of particles, we expect a decrease of the actual pressure widnt energy range&f. cascade mode[25] at high energies,
respect to the gas pressure. hydrodynamic model§26]).

Finally, at low temperatures, if the density is increased Class(1) methods cannot be extended to treat stepsnd
(n~n.y, the contribution of the repulsion effect to the in- (iii); the validity of the implicit assumptions required to treat
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step (ii) alone cannot be tested within this method. On the

other hand the method of clag®) currently favored in the
literature, namely, CMD, could be adapted, in principle, to
cover the full sequence), (ii), and(iii), provided only that
enough computer time be invested.

The CA method of this paper supplies an alternative

method of clasg2) capable of handling the dynamics in a
computationally efficient way.

B. Construction of the thermodynamic runs and tests

Our numerical experiments are organized as follows. In

conformity with laboratory fragmentation experiments the
number of particledA is set equal to 300 in the majority of
our CA simulations. A few test runs were carried out with

A=600 and 900 particles, in order to assess the influence of
the particle numbers on the fluctuations of the computed

thermodynamic variables.

We have explored particle number densitiéa the range
of 0.03 to 0.10 particle/ffth The range of the energie®
extends from—5000 to+2500 MeV; it is examined with a
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step of 50 to 100 MeV; the thermodynamic relations, and £ 3. caloric curve at high enough temperatures:0.043:

temperature and pressure against energy are thus defin
with some 100 directly computed points each. The numbe
of timesteps® = 1200, with® ,=1000.

In our experiments two sets of rules, R, and R, de-
fining the construction of initial conditions are adopté¢a).
Rposi: random uniform spatial distribution of the particles
over “volume” v; R,e1: random uniform distribution of
states(equiprobability of all states For A=300, rules(a)
thus lead to spatially homogeneous high
(=~2500 MeV) configurationsib) Ry,«: approximately cir-
cular subarea ofv populated with a densityn
=1 particle/cell; Re)o: 90% of the particles are in the rest
state, 10% are uniformly distributed over the moving states
Rules(b) produce low energy configurations, which are mac-
roscopically inhomogeneougxcept if the subregion coin-
cides withv).

For given parameterd, v, and hencen, an initial con-
figuration is generated bga) [(b)] whose energy is com-
puted.

A first thermodynamic run is followed ove® =1200
steps, and the temperature and pressure is obtained from
eraging over the last 200 steps. The thermodynamic run th
defines one “thermodynamic pointA, v, E, T, andP.

A second thermodynamic run, with corresponding “ther-
modynamic point,”A, v, E+AE, T', andP’ is then pre-
pared adopting as initial condition the last configuration of

&d- 300, 600, and 900.
r

The following test calculations were performed. In a first
series of auxiliary experiments at=5 Mev and for n
~0.05 nucleon/frh, we have verified that the time averages
are equivalent to phase-space averages. To this end we fol-
lowed a single particle ove® =2000 time steps, and we
kept track of the number of steps over which the particle was

energyjn the rest state®, and in motion®,=0—0,, respec-

tively. Alternatively, we counted the total number of par-
ticles at rest and in motiord, and A,,, respectively, in a
relaxed state at time step 2000. Under conditions of ergod-

icity, we should observe the equali®, /@ =A,/A. Our ex-
periments indicate that we do satisfy the equality within a
relative error of the order of 7—8%, consistent with the theo-
retically expected finite number fluctuatiotsf order 14/A
~6%).

In the second place, at the average density of the investi-
gated range,n~0.05 nucleon/frh, we have verified in
greater detail that the ideal gas law holds for5 MeV.

Figure 3 displays th&-T behavior forA= 300, 600, and 900

fﬁ/érticles. In the range of positive internal energies, the en-

érgy shows an asymptotically linear dependence on tempera-
ture, which can be represented in the form

E=AT—E,(A); (17)

the previous thermodynamic run in which one randomly sethe shift of the originE,(A) is an interaction contribution.

lected moving[resi particle is stoppedset it in motion if
the previous run corresponds to rul@s [(b)].

The slopes obtained from a least squares fit are 298, 648, and
974, respectivelyideal gas values: 30017, 600+24, and

This procedure is continued until the energy range of in-900=30). Over the range of validity of the linear approxi-

terest (-5000 to 2500 Mey has been explored.

mation[Eq. (17)] the experimental points show virtually no

Then a second sequence, a third sequence, etc. of thermftuctuations. In contrast, at lower temperatufesge 1.4-2

dynamic runs is similarly prepared, starting with different
initial “volumes,” v', v”, .. ..

MeV), we observe large fluctuations. The potential contribu-
tion is found to be approximately proportional to the number

From the table of numerical results we can plot one therof particles,E,(A)=7.2A MeV. In the third place, we have

modynamic variablex; against a second thermodynamic

also examined theP-T relation at the density,n

variablex, the remaining three variables being held constant=0.05 nucleon/fri, which should be independent &fin the

(X1, X2, X3, X4, @andxs=A, v, E, T, andP)

ideal gas range. The numerical results indicate that within
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FIG. 4. A=300:(a) P-T relation at 7 densities 0.88n=<0.10 nucleon/frh (all points experimenti| (b) P-n relation at four temperatures
(interpolation, and(c) E-T relation at seven densities.

the statistical fluctuations the three curves superpose and ap- C. Thermodynamic results

pear to be practically independent of the number of particles ¢ survey of the explored energy and density range is
A over the full range. As anticipated in our general discus-symmarized in Figs. 4. All results of this section referAto
sion, theP-T relation does exhibit a vertical asymptote at a =300 particles.

critical temperaturel ,;; at high temperatures it follows an Figure 4a) shows the equation of sta@=P(T,n) in a
ideal gas law behavior; in the intermediate range, we do nopressure-temperature diagram, at seven densitie€).031
observe a decrease in pressure with respect to the ideal gdsottom curve, 0.043, 0.055, 0.068, 0.081, 0.092, and 0.106
law (cf. our general discussi@nthe interaction energy we (top curve particles/fnf (300 particles distributed over
are working with seemingly does not exhibit this behavior. 2704, 1996, 1521, 1225, 1024, 900, and 784 cells, respec-
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tively). All individual points of this diagram are actual com- A
puted points; no interpolations or smoothings have been ap-
plied at this stage.

Each curve has a hyperbolic shape with one asymptote
coinciding with the ideal gas contributioriEq. (163], the
other corresponding to a constant temperature. Analytically
we can interpolate this behavior by an equation of the fol-
lowing form:

=
P1(n) é ©
P(T,n)=nT+ Po(n)+_|_—; (19 =
B
-1
Tpair(n)
the functionsP,(n), P1(n), andTy,(n) are represented as )

lowest-order polynomials:

4
Po(n>=k§l Po®,  P1(M)=Pyn, Tpa(n)=Tin,

o
(183 0 4 8 12 16
with the coefficients taking the values E (MeV )
P,,=—1.37, P,,=-40.2, P,;=388, FIG. 5. Theoretical caloric curv@D) E-T atn=0.03, 0.06, and
0.10 (E, rescaled, in MeV/nucleon andin fm~2) compared with
Pos=2306, P,;=1.51, T,=33. laboratory experiment&D) [27].

In representatior{18) the first and second contributions of kinetic energy per particle close tbut slightly lower than
the right-hand side are the counterparts of the contributionghe binding energy of a particle in a stable pair S&¢.B).

to the internal energy in the high-temperature regiig. ~Although  our  numerical experiments are two-
(17)]; the third contribution describes the low-temperaturedimensional, and hence, the results are not directly compa-
asymptotics. rable with real laboratory experiments, we wish to point out

With the help of interpolation formulél8) we replot the that a plateau in th&@-E curve has been reported in the
equation of state as a pressure-density curve, even though teellisions of gold-gold and oxygen-silver iofi7], in a tem-
numerically explored density range, 0.03 to 0.1 nucleofyfm perature range 4-6 Mev. In our numerical experiments the
was sparsely sampled by our actual thermodynamic rund.-E curve likewise exhibits a platedthe asymptote irE-T
The results are shown in Figs(b} (temperatures: 2, 3, 4, relation (19)]; the relevant temperature ;(n)~3 Mev
and 5 Me\}. As transpires from the analytic representation,[Eg. (18a] for the higher densities we have considered. Fig-
at any temperatur@ we have a corresponding critical den- ure 5 shows the superposition of the experimental points
sity, Npai{ T)=0.03T [Eq. (18)], at which the nuclear matter with our theoretical caloric curve an=0.03, 0.06, and
becomes incompressibldiverging pressupe 0.1 particle/frd. Our theoretical result is thus not only quali-

Figures 4c) show the caloric curve, enerdy againstT, tatively consistent with this experimental result, but even
for the seven densitieowest density: top curve; highest quantitatively the theoretical and experimental orders of
density: bottom curve all points of this curve are again magnitude of the critical temperature range are compatible. It
computed points. We can interpolate these curves by an an&hould be kept in mind, however, that an experimental deter-
lytic expression, mination of a nuclear temperature remains a controversial

operation.
Ei(n) (19

T 1 ' D. Formation of clusters

Tpaidn) Figures 6 supply plots of the microscopic distribution of
the particles over the available CA “volumey at different
densities and energider temperatures

E(nN)=E,+E,n, j=0,1 (i) At the lowest density level investigatedn
: o ~0.03 particle/frd, and (i) at a high enough temperature
Eoo=—195, Eg = —4.4x10% (199  (T>1 Mev) or energy E>0), all particles remain free. The
medium is seen to be uniformly populated at any time step
Eio=—17.7, E;;=—325; (>0y). Snapshots taken at random time steps may exhibit a
few filamentary clusters of small size<£5), but these struc-
TpaiN) being defined in Eq(183. tures dissolve at the following time step. The configuration is
Equationg18) and(19) exhibit a singularity in the behav- thus virtually an ideal gagb) As the temperature and energy
ior of the pressure and the energy, at the critical temperaturare lowered we finally observe stable, relatively small sized
T=Tpadn). The latter roughly corresponds to an averageenergetically bound aggregates~30 atE~—700 MeV).

E(T,n)=AT+E,(n)+

with
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E=-1500 n= 0.031 E=-300 n= 0.031 E=1400 n=- 0.031 nuclear physics, we now observe a thermodynamically stable
; distribution of nuclear fragments of all sizes up to a maxi-
mum size.

The visualization of the spatial distribution of the particles
within the accessible “volume™ (Fig. 6) confirms that our
N-body system of nucleons exhibita/o phasesas antici-
pated in our comments Se@dV B) on general grounds. At
low densities and high enough temperatures the system be-
E=--3400 n=- 0.068 E=-1000 n= 0.068 E=1000 n=- 0.068 haves essentially like a perfect gas whose particles are the

‘ ' T ¢ individual nucleons. At high densities and low enough tem-
‘ : peratures we observe a gas whose particles are aggregates or
E : , clusters of nucleons. Accordingly, at fixed temperaftirgn
’ an appropriate ranggeif we let the density increase from a
NI L 4 low enough to a high enough value, we expect to encounter
: a critical densitynp(T) at which a phase transition from a
gas phase to an aggregation phase takes place. In fact, per-

E--4700 n=- 0.106 E--2100 n- 0.106 E-1400 n= 0.106 colation and aggregation-type phase transitions are well
ool | € % ¥ oo known to occur at well-defined critical densities. Alterna-
‘ & <% ¥ 2 tively, then, at fixed density, if the temperature drops from
: 5 jo:ehey ' ‘ a high enough to a low enough value, this transition occurs at
4 O §oo oo "% Js a critical temperaturép(n); for dimensional reasons this

critical value is of the order of the binding temperature of a
particle in a pair{but slightly higher than the critical tem-
. S peratureT p,{n) entering Eqs(18) and (19)].

FIG. 6. A=_300: Mlcrosgc_)plc dlstrlbutlon of nucleons over the Close to the critical temperatuﬂépair(n) [Egs. (18) and
CA cells at dlfferen‘_[ densme_s_ and energies; cc_)ndensatlon a99r919)] thermalization is very slow, so that the numerical re-
gates observed at high densities and low energies. sults may not be fully reliable; therefore, we have not inves-

The majority of the particles remain free, even at energiedigated the thermodynamics in the temperature rafige

< —1000 Mev. The proper investigation of the thermal equi-< Tpai(n) [Or the density rang@>np.(T)]. Intuitively it
librium is time consuming at these low densities, since col-seems likely that the latter range corresponds to a condensed

lisions are too rare. phase in which all clusters have merged into a single super-
(i) At intermediate densitiesn~0.05 particle/fd, we  cluster. _ o
notice again thafa) at high energies and temperaturigs The aggregation-type phase transition itself occurs at a

we observe now longer filaments10); statistically the latter is expected to manifest itself in the occurrence of a
medium remains homogeneoub) As the energy and tem- cluster distribution in the form of a power law.

perature are lowered, several large bound aggregates de-

velop, which may contain over 30 particlegat E E. The distribution of the fragments

=—2000 Mev); t_ypically, as the energy is further decreased, Figures 7 show the cluster distributions at

we observe a single large aggregate that finally tends t@.q 1 particle/frd, namely N(s), the number of clusters
dominate. At this stage the macroscopic translation SyMMesgainst s, the cluster size, in a log-log plofenergies
try may appear as broken; in the limited context of our ex-_ 4400 MeV (a), — 3600 MeV (b), and 2500 MEV(C)] In
periments, the medium appears as inhomogeneous. Howeveprigs_ 7a) and 71b) the representative points are seen to fol-

in the strict thermodynamic context, that corresponds to the,, 5 straight line. Hence the distribution obeys a power law,
limits A—o, v—o, with n=A/v remaining finite, this is

not the case; in this infinite nuclear medium homogeneity is N(s)ocs™ ™ (20
preserved on a small scaleven though this scale is now

larger than the original scale of homogengitiii) At the  with 7=~1.35. This distribution compares favorably with the
highest densities investigated~0.1 nucleon/fri, we ob- 2D results of discs obtained by Strachan and Dorso, who find
serve(a) already large aggregates~30) at high energies 7=1.4[23].

(E=1500 MeV), which remain uniformly distributed over At the higher energie€2500 Mey a curvature becomes
the lattice of cells and which are surrounded by clusters ofioticeable in these plots. Likewise, if we consider lower den-
smaller sizes. These clusters do not appear to be energesities, a curvature essentially survives at all energies investi-
cally bound. Pictures of the microscopic configuration at sucgated.

cessive steps in time show that they dissolve and that new A fragment distribution conforming to E¢20) describing
clusters form. In fact, the ideal gas properties continue to béhe occurrence of aggregates of all sizes is the fingerprint of
obeyed in spite of the apparent statistical equilibrium be-a percolation phase transitidi2] or an aggregation-type
tween cluster formation and dissolutiqib) At low energies phase transition. The numerical results of Fig. 7 are indica-
and temperatures a single dominating energetically stable agjve that the power-law behavior is exactly obeyed at some
gregate is observe@vith s>100 atE=—5000 MeV). The energy intermediate between alternatives Fig) @nd 7b),
latter is surrounded by stable clusters of all sizes. In terms ofe., close to the energy at which the caloric curve shows a



2610 A. LEJEUNE, J. PERDANG, AND J. RICHERT PRE 60

n= 0.106 (fm™)
, , E=—3664 (MeV)

. n= 0106 (fm™) k-8
%, E=—4424 (MeV)

Z z
z Z
=5 e
L ]
t p L | Lt g T
10 12 10 10
S -
O] ®
o
s n= 0.106 (fm™)
€251 (MeV)
= %,

FIG. 7. Cluster distribution at=0.1; E= —4400(a), —3600 (b), and+2500 MeV (c) (14 rung. Least-squares estimatesofa) full
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bent[Fig. 4(c)]. On the other hand, under alternative Fig.low temperature. Since the direct purpose of this paper is to
7(c) we notice that there are no large aggregates; the clustedemonstrate the application of CA approachekHoody dy-
are not physically bound; they dissolve and new cluster;mamics rather than to phase transitions, we have not concen-
form again. trated here on a precise analysis of the aggregation phenom-
Our numerical investigation thus supports the idea of arenon. We plan to come back to this problem. For the
aggregation-type phase transition which is responsible fopurposes of comparison of the CA approach with laboratory
the nuclear fragment distribution in re@D) laboratory ex- experiments we are currently carrying out a three-
periments. The fragments of heavy ion collisions are indeedimensional extension of the method. We further plan to deal
found to obey a power law of exponent2.2. The differ-  with the full collision process of the two ions, an approach
ence between the laboratory value and the value derivethat should allow us to dispense with the thermodynamic
from our 2D numerical experiments is an effect of the di-assumptions implicit in the current treatment. In the latter
mensionality. approach the distribution of the fragments can be read off
directly from the numerical results without resorting to so-
VI. CONCLUSION phisticated cluster identification methods. A major aim of the
extension will consist in a comparison of the dynamical re-

In this paper we have developed a simple 2D cellulargyts with the results obtained by Monte Carlo simulations.
automaton describin§l-body systems. From the direct dy-

namical results global statistical properties can be intro-
duced. In particular thermodynamic properties are easily de-
rived [Egs.(16)]. A.L. would like to thank the SPM Department of the
As an illustration the model has been applied to the probCNRS (Parig for financial support of a stay at LPT in Stras-
lem of heavy ion collisions in nuclear physics, with the re-bourg during which this work was initiated. He thanks the
sulting fragmentation of the nuclear matter. The model remmembers of LPT for the hospitality extended to him, as well
sults, which are two-dimensional, are in qualitative as the members of the Supercomputing Center CINECA in
agreement with the real experimenfthree-dimensional  Bologna where part of the numerical work was done. J.P.
They suggest an aggregation-type phase transition that detegratefully acknowledges financial support from the Royal
mines the distribution of nuclear fragments, occurring at aSociety-FNRS European Exchange progrd@97, 1998.
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