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Application of cellular automata to N-body systems

A. Lejeune
Institut de Physique B.5, Universite´ de Liège, Sart Tilman, B-4000 LIEGE 1, Belgium
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A two-dimensional cellular automaton model is introduced to deal with the dynamics of a finite system of
particles whose interactions are simulated by two-body step potentials. The method is illustrated for a potential
approximating the standard Lennard-Jones potential, representative for the problem of heavy ion collisions in
nuclear physics. From the cellular automaton dynamics thermodynamic equibrium state variables are intro-
duced in the usual way. The numerical experiments indicate the occurrence of a phase transition. Macroscopi-
cally the transition is marked by a singularity in the equation of state; microscopically it manifests itself by the
formation of clusters of particles of all sizes, obeying a mass distribution in the form of a power law of
exponent 1.35.@S1063-651X~99!04909-0#

PACS number~s!: 05.40.2a, 05.45.2a, 25.70.2z
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I. INTRODUCTION

We develop in this paper a multipurpose, multiparame
two-dimensional~2D! cellular automaton~CA! scheme de-
vised to deal withN-particle systems. The particles intera
dynamically through radial pair potentials, in accordan
with classical mechanics. In the present version the parti
themselves are conserved in the interaction; we anticip
however, that reaction processes could be added with
complicating the formulation in any basic way. The CA a
proach may be viewed as a discretized version of class
molecular dynamics~CMD!, with the difference that severa
quantum-mechanical effects are introduced~exclusion prin-
ciple, quantum-mechanical scattering!. Like the latter, the
CA approach lends itself to direct dynamical calculatio
from which statistical properties may be derived. In partic
lar, thermodynamic properties may be obtained, provid
that the conditions of thermal equilibrium are observed to
satisfied. The main advantage of the CA scheme with res
to CMD lies in its algorithmic simplicity. This implies in
turn that the CA calculations are less time consuming, a
therefore, they lend themselves to investigations of br
parameter ranges, which can be explored with a sm
enough step. This point is of relevance in particular wh
phase transitions and other parameter-dependent pheno
are to be investigated. The price to be paid for the increas
computational efficiency is a decrease in the precision of
the individual particle trajectories. By the very constructi
of the CA framework the latter are not meaningful individ
ally, but the statistical features of the ensemble of partic
are properly represented. To some extent, a similar obse
tion also holds for CMD; on the one hand, the trajectories
the particles in the treatment of CMD are not meaning
either, since the particles should be treated as quant
mechanical objects in the first place; on the other hand, e
PRE 601063-651X/99/60~3!/2601~11!/$15.00
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in the strict classical context, the particle motions are c
otic, of very short Lyapunov time~of the order of the mean
collision time!; accordingly, we are unable in principle t
compute the individual particle trajectories correctly ov
macroscopically relevant time scales.

The first part of this paper supplies a general discussio
our CA method. Besides the specific CA schematization~dis-
crete time, cellular space, number of velocity states equa
the number of neighborhood cells, and Fermion-type exc
sion principle!, the following additional ingredients enter ou
model: ~i! The calculations are two-dimensional; the pa
ticles are confined to a fixed ‘‘volume’’~an area of the cel-
lular lattice!. ~ii ! Two-body interactions are taken into a
count, in the form of a multistep potential.~iii ! Scattering
probabilities are obtained quantum mechanically, from
potential discussed under~ii ! above. ~iv! Thermodynamic
properties are derived following the methods of@2#.

In the Sec. V we illustrate the approach by a spec
nuclearN-body problem@1#, which serves the main purpos
of demonstrating the efficiency of the approach. We anal
the question of heavy ion collisions and the subsequ
nuclear fragmentation. The method enables us to reco
qualitatively known results~power law of the nuclear frag
ments!; it also suggests a phase transition towards the for
tion of ‘‘clusters’’ of nucleons of different sizes. Since th
calculations are two-dimensional, the results are not dire
quantitatively comparable with actual experiments.

II. CA FRAMEWORK OF THE MODEL—
THE LATTICE PAIR INTERACTION

In our model, time is measured by an integer multiplet of
a basic time stepDt. The cellular space adopted is a regu
hexagonal lattice space; the length of a side of a cell is
2601 © 1999 The American Physical Society



oi

e

o

a

ic

it
um
lit
e

uc
ss

y

ite

ity

-

de
-

ns

In
hen
f

s a

oth
ort-
cell

n

i-
d:

le
irs

-

2602 PRE 60A. LEJEUNE, J. PERDANG, AND J. RICHERT
ferred to as the cellsizeDx; a cell is identified by the position
vector r of its center.

A lattice particle, at timet and in cellr , may be viewed as
being smeared out over the cell, or, alternatively as a p
occupying the cell center. It exists in one among seven m
mentum states: a particle is either at rest~state 0) or it is in
a state of motion with a reference speeduvu in a directionei
from the center of the cellr it occupies to the center of on
of the six contiguous cells~position vectorsr1 lei); the di-
rections ei are labeled counterclockwise by the integeri
51,2, . . . ,6;l 5A3Dx is the distance between the centers
any pair of contiguous cells~Fig. 1!.

The reference speeduvu is such that in one time step
moving particle is shifted to a contiguous cell,

uvu5
l

Dt
. ~1!

Following a convention standard in lattice-gas dynam
since the work by Hardyet al. @3#, a formal~computational!
exclusion principle is adopted in the form that a spatial s
carries at most one particle of each dynamical state; the n
ber density allowed in our model then obeys the inequa
n(r )<7 particles per cell. This principle mimics to som
extent the actual Pauli exclusion principle, thereby introd
ing a quantum-mechanical element into an otherwise cla
cal model.

The model contains a total numberA of identical par-
ticles, of massm. These particles are conserved in the d
namics. We denote them byAr(t) andAm(t), the total num-
ber of rest and moving particles, respectively, at timet;
hence,A5Ar(t)1Am(t).

Finally, we require the particles to be confined to a fin
region of the lattice, of two-dimensional ‘‘volume’’v. The
boundary conditions for the particle motions are periodic
conditions.

In the illustrationDt is chosen of the order of the colli
sion time of nucleons in the bound nucleus ('10223 s). Dx
is of the order of the range of the nuclear forces ('2 fm).

The general model pair potential we consider here is
fined as follows. Let particlej occupy a central cell of posi
tion r j ; denote byR1(r j ) a first ring of cells surrounding the
central cell; this ring is made up of the cells of positio

FIG. 1. Effective range of interactions included in CA dynam
ics: a nucleon in a reference cell~grey! interacts with any nucleon
of the reference cell, the first ring~white cells!, and the second ring
of cells ~hatched! surrounding the reference cell; unit vectorsei , i
51,2, . . . ,6,directions of velocities of moving states.
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defined byr j1 lei , i 51,2, . . . ,6;denote byR2(r j ) a second
ring of next-nearest neighbor cells,r j12lei and r j1 lei
1 lei 21 , i 51,2, . . . ,6~0 identified with 6!, surrounding the
first ring, etc.~Fig. 1!.

The interaction potential between a pair of particlesj ,k, j,
andk being indifferentcells, is represented by

Vpair~ ur j2r ku;p!5Vs if

r kPRs~r j !; s51,2,3, . . . ,S,S11, . . . ; ~2!

V1 , V2 , . . . ,VS , VS11 , . . . are adjustable parameters.
practice the interactions are of finite range, so that we t
haveVs50 if s.S. The argumentp denotes the number o
different pairs contained in the central cellr j ~allowed val-
ues: p51, 3, 6, 10, 15, and 21!, if the cell contains more
than one particle; such a situation will be referred to a
‘‘collision state.’’ While irrelevant if particlesj andk are in
different cells, this parameter becomes important when b
particles are in the same cell; it enables us to simulate sh
distance interactions with an improved precision. In case
r j is in a collision state, with both particlesj and k in the
samecell r j , we set

Vpair~ ur j2r ku;p!5Vo,p if r k5r j , ~2a!

whereVo,p , p51, 3, 6, 10, 15, and 21 is again a collectio
of six extra adjustable parameters.

The total potential acting on a particlej at siter j will be
denoted byV(r j ;p). We have

V~r j ;p!5(
kÞ j

Vpair~ ur j2r ku;p!. ~3!

The potential acting on a particlej at siter j and due to the
particles in the neighboring cells only~rings R1 ,R2 , . . . ,
will be denoted byV(r j ):

V~r j !5 (
kPR1 ,R2 , . . .

Vpair~ ur j2r ku;p!. ~3a!

The total potential~potential energy per particle mass! W
is

W5 (
pairs (j,k)

Vpair~ ur j2r ku;p!, ~4!

the summation extending over all distinct pairs.
The total kinetic energy~per particle mass! is

K5 1
2 uvu2Am . ~5!

In our nuclear-collision illustration the following numer
cal values for the parameters of the potential are adopte

V15210 MeV, V2521 MeV with

Vs50 for s>3;

Vo,p52101~p21!6 MeV; p51,3,6,10,15,21. ~6!

With this choice of parameters the potential of a sing
pair in a cell corresponds to an attraction, while for two pa
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in a same cell the potential is already repulsive. The dista
between adjacent cells is taken asl 52.1 fm.

We observe that the potential we adopt for our illustrat
generalizes the simplest lattice potential so far considere
the context of nuclear fragmentation~on a three-dimensiona
cubic lattice! by a variety of authors@1,4–7#, namely, the
one-parameter potential

Vpair~ ur j2r ku!52e if r k5r j1 lei ,

i 51,2, . . .

Vpair~ ur j2r ku!50 otherwise. ~7!

This representation refers to a cubic lattice whose sites
allowed to carry either zero or one particle; the interact
potential is nonzero and attractive (e.0) only if the two
particles are in adjacent cells.

CA EVOLUTION RULES

Given the CA configuration~i.e. the states of the collec
tion of all cells! at time stept, a new configuration, at ste
t11 is obtained by updating first all linear momenta, a
then all positions.

The updating of the momenta is made~a! by taking ac-
count of the local collisions and then~b! by dealing with the
finite range forces.

A. Collision phase

1. Local collisions

A local collision stateC transforms into another allowe
local collision stateC8 (ÞC), C→C8, with probability
PCC8>0 per time step, provided that the collision proce
satisfies energy-momentum conservation; the transitionC
→C8 is forbidden,PCC8[0, if energy–momentum conse
vation is violated. The nonzero transition probabilitiesPCC8
are functions of the parametersVo,p of the interaction poten-
tial. These probabilities are computed by a preliminary st
dard scattering analysis of particles interacting through
tential ~3a! @8#.

In our specific nuclear collision illustration the probabi
ties are obtained as follows. IfC is a local collision state of
a hexagonal cell, then a different collision stateC8 ~out
channel! exists only if stateC contains one pair of opposit
momenta, say in the directionei ~momentaei , ei 1352ei ,
i 51, 2, or 3!; denote this binary collision~sub!state byc;
there are then at most two equivalent exit channels, nam
those with opposite momenta in the two directionsej , j 5 i
11, andi 21; we denote these binary states byc8 and c9.
The transition probabilitiesPcc8 , Pcc9 , andPcc , of the pro-
cessesc→c8, c→c9, andc→c, are related by

Pcc9[Pcc8 and Pcc5122Pcc8 . ~8!

Only one among these three parameters is independen
stateC is a binary state (5c), then the quantum-mechanic
diffusion probability for the typical numerical parameters w
have adopted yieldsPcc850.42.

If C is a higher-order collision state, we reduce the tre
ment in a straightforward way to considerations of bina
ce
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substatesc; for C ternary, the diffusion probability for our
numerical parameters is reduced by a factor of the orde
100, as compared to our binary case; we, therefore, disre
this diffusion. For the higher-order collision statesC, as a
consequence of the exclusion principle, most out chann
are closed. Although the diffusion probabilities~for the nu-
merical parameters chosen! increase now with the number o
particles per cell, the contribution of these diffusion pro
abilities to the dynamics is found to be inefficient. Therefo
in the actual computations these probabilities are dis
garded.

2. Finite-range collisions

The momentum changeDp of a particle in cellr at time
stept, due to the interactions with the rest of the particles
the neighboring cells@those in the same cell being treate
under Eq.~3.1a!#, is given by a discretized version of New
ton’s equation of motion

Dp5F~r !Dt; ~9!

F(r ) represents the force acting on the particle in cellr ,
which is due to the configuration of all other particles at tim
stept within the ringsR1 , R2 , . . . ,RS . We define the Car-
tesian force component at time stept in the lattice direction
ej , F j (r ), in terms of the forward difference of the potenti
at time t in the directionej , i.e.,

F j~r !52
m

l
@V~r1 lej !2V~r !#, ~10!

where the potential at siter is given by Eq.~3a!.
The remainder of the CA-adapted treatment of the forc

a simplified version of the algorithm described in@9#. At
time stept the particle has a momentump which is either 0,
or equal topei , i 51,2, . . . , or 6,with p5muvu. The change
of momentumuDpu, over one time stepDt, as given by the
equation of motion@Eq. ~9!#, should be small as compared
upu; this computational requirement constrains the choice
the time step for a given lattice size. The formal moment
at time stept11 becomes

p85p1Dp[pi81pj8 . ~11!

If the momentum at time stept is nonzero, (p5pei), then
the new momentump8 lies in the angular sector (ei ,ej ), i
51,2, . . . , or 6,j 5 i 61. Represent thenp8 as the sum of
the two vectorspi8ei , pj8ej directed along the axesei , ej ~Fig.
2!; the absolute value ofp8 remains close top, so thatpi8
'p andpj8!p.

If the momentum at stept is zero, then the directionsei
andej are chosen to flank the force direction. The right-ha
side of Eq.~11! now represents the vectorial decompositi
of Dp along the skew axesei , ej ; hence, we havepi8!p and
pj8!p.

Since our CA model has only seven momentum states,
have to reset the new momentump8 equal to one of these
admissible states:

p8→p950, ~Po! or pek , ~Pk!, k51,2, . . . ,6.
~12!
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The new state is then selected through transition proba
ties. As a consequence of the small change of momentum~as
compared to the CA momentump) per time step, among th
moving states only statesi and j are actually attainable, s
that we need to specify three probabilities only,Po ~transi-
tion to rest state! and Pi , Pj ~transition to moving statesi
and j, respectively!.

With the above procedure the momentum equation can
be satisfied ifp8 exceeds the CA momentump. An exact
treatment for this alternative is described in@9#. We have
adapted the latter scheme here in a simplified form.

In our heavy ion collision illustration the CA referenc
momentum takes the valuep55310215 g cm s2153
310222 MeV fm21; over one time step the average relati
change of momentum isDp/p'0.2 in the experiments.

B. Translation phase

Once all momentum states have been updated by the
and finite-range collision rules, each particle, of new m
mentump9 at time stept11 @Eq. ~12!#, is given a displace-
ment in accordance with the equation

Dr5
p9

m
Dt; ~13!

a particle in a moving statei is thereby shifted from its cur
rent position in cellr to the nearest neighbor cell in th
direction ofp9; if it is in a rest state, then it remains in cellr .

The computation of the CA configuration at time stept
11 is completed once all particle positions have been
dated.

IV. THERMODYNAMIC TREATMENT

We discuss in this section the construction of the therm
dynamic properties associated with the CA gas of a fin
numberA of particles, once the particles are in a statistica
stationary state.

We view this gas as a simple one-component homo
neous thermodynamic system obeying Callen’s or Tisz
axiomatics of thermodynamics@10,11#. The entropy per par-
ticle, S/A, is then expressible as a function of the intern
energy per particle,E/A, and the volume per particle,v/A.
Accordingly, our thermodynamic system is fully determin
if we are given two equations of state, for instance, tempe
ture and pressure, as functions of the energy and volume
particle, T5T(E/A,v/A)5T(E,v,A) and P5P(E/A,v/A)
5P(E,v,A). These equations of state are accessible fr

FIG. 2. Geometry of finite-range collisions.
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the CA simulations. A full thermodynamic description of th
CA gas in its statistically homogeneous phase is thereby
rectly accessible in principle.

This homogeneous state is stable provided that the
tropy S is maximum, i.e., provided that

S ]P

]v D
T

,0 and bounded, cv.0 and bounded, etc.

~14!

The violation of a stability condition is indicative that th
system ceases to conform to our initial assumption of spa
homogeneity. The configuration then undergoes a phase
sition towards an inhomogeneous state.

A. Equations of state

To construct the two required equations of state the
dynamics of the collection of particles is solved according
the following procedure.

A fixed numberA of particles and a fixed ‘‘volume’’v ~a
finite area of the CA lattice! are chosen so that the overa
number densityn5A/v is fixed as well. The system of par
ticles is further given a fixed total energyE. Since the par-
ticle mechanics adopted is conservative, the energy rem
fixed. The statistical equilibrium thereby conforms to a m
crocanonical equilibrium.

A ‘‘thermodynamic run’’ consists in solving the CA dy
namics for givenA, v, andE, over a large enough numberQ
of time steps. The initial conditions are prepared as follow
~a! The particles are distributed over the available ‘‘volume
v, according to a selected rule of positions Rpos; the initial
potential energyW(0) can then be computed.~b! Each par-
ticle is then assigned a dynamic state~rest state 0 or moving
state 1,2, . . . ,6) according to some rule of velocities Rvel ;
the initial kinetic energyK(0) is thus determined as well.

Accordingly, the total energyE is known for the thermo-
dynamic run.

Suppose that the CA dynamics reaches a state of the
equilibrium afterQ0 time steps. The macroscopic thermod
namic variables are then generated from the correspon
microscopic CA variables via time averaging, indicated
^ . . . &, over the available statistical equilibrium rang
namely, the time interval (Q0 ,Q). Temperature is the time
averaged kinetic energy per particle,

T5T~E,v,A!5
1

A
^K&. ~15!

Pressure is evaluated from the~2D! virial expression,

P5P~E,v,A!5Pg1Pint ~16!

with

Pg5
1

v
^K&5

A

v
T>0, ~16a!

Pint52
1

2v (
j 51

A S (
k. j

A

^r jkF~r jk!& D , r jk5ur j2r ku

~16b!
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The componentPint is the effect of the interactions betwee
the particles@F(r jk), force acting between pair (j ,k) along
the directionr jk , given by Eq.~2! by a forward difference;
for a pair in the same cell̂r jkF(r jk)& is given by Eq.~2a!#.

If the thermodynamic run is repeated for a range ofA, v,
and E values, a detailed thermodynamic description of
equilibrium states of our particle system becomes availa
through the equations of state~15! and ~16!.

B. Comments on the thermodynamic model—phase transitions

The typical pair-interaction potentials we have in mi
are assumed to be repulsive at small enough interpar
distancer, attractive at some larger distance and zero at la
enough distances@cf. Eq. ~2!#. Provided that the repulsion i
strong enough forr ,r rep the virial pressure relation in form
~16b! indicates in the first place that the thermodynamic s
bility conditions may be violated through a singularity~ten-
dency to incompressibility!. In fact, take a collection of a
fixed numberA of particles contained in a cylinder closed b
a movable piston, and kept at a constant temperatureT; as
the volumev is decreased, once the density exceeds the c
cal number densitynrep at which the average distance
pairs of particles approaches the critical distancer rep, the
system of particles tends to become incompressible.

In the second place, suppose we generate an initial c
figuration of particles randomly distributed over the availa
volume, with a densityn. Provided that the density is not to
low, a significant fraction of the number of occupied ce
occur in ‘‘clusters’’ of different sizess ~collections ofs con-
tiguous nonempty cells!. Moreover, if the density exceeds
critical densitynP, then a percolation phase transition tak
place in the initial distribution; namely, ‘‘percolation clus
ters’’ of arbitrarily large sizes are then formed~cf. @12#!.

Let Tpair(n) denote the critical temperature of pair stab
ity, at which the average kinetic energy per pair is close
the binding energy of a pair. At low enough temperatur
T!Tpair(n), a cluster is a dynamically stable physical unit;
is a physically bound structure; once formed it will contin
on average to exist as a stable cluster. Alternatively, at h
enough temperatures,T@Tpair(n), at every time step cluster
are likewise observable provided only that the density is
too low ~cf. the remarks about the initial state!; however,
these clusters are just geometrical accidents; they are
physically bound structures; they form and dissolve aga
but in such a way that at any time step a same fraction of
total number of occupied cells belongs to geometrical cl
ters.

Hence the behavior of the pressure can be anticipated
high temperatures@T@Tpair(n)#, the pressure~rate of change
of momentum of the free components colliding with a u
‘‘surface’’! is manifestly the standard kinetic gas pressurePg
@Eq. ~16a!#, the free components being the individual pa
ticles; the interaction effectPint @Eq. ~16b!# is negligible.

At lower temperatures and for sufficiently low densiti
(n!nrep) the bound clusters play the parts of the free p
ticles; since their number is smaller than the actual num
of particles, we expect a decrease of the actual pressure
respect to the gas pressure.

Finally, at low temperatures, if the density is increas
(n'nrep), the contribution of the repulsion effect to the in
e
le

le
e

-

ti-

n-

s

o
,

h

t

ot
,
e
-

At

t

-

-
er
ith

d

teraction componentPint becomes dominant, and the pre
sureP becomes large.

Whether an intermediate range materializes in an ac
experiment, in which the pressure is measurably less t
Pg , will depend on the values of the parameters of the
tential.

V. ILLUSTRATION: NUCLEAR FRAGMENTATION

A. General comments

The analysis of heavy ion collisions in nuclear physics
lower energy ranges~avoiding excitation of the nucleons an
creation of new particles! @13–17# has raised a number o
problems, among which we mention only the following: C
the formation of clusters of nucleons following the collisio
process be interpreted in terms of a phase transition?
thermodynamic phase transition consistent with a power-
distribution of the fragments~exponent 2.2 in real laborator
experiments!?

In the theoretical treatment we should ideally follow th
full dynamics of the heavy ion reaction process. We m
regard the latter as a sequence of three phases:~i! the initial
impact of the projectile with the target nucleus,~ii ! the shar-
ing of the impact energy among the individual nucleons in
‘‘compound nucleus,’’ possibly followed by a statistica
equilibrium state, and~iii ! the eventual decay of the com
pound nucleus into nuclear fragments.

Currently adopted theoretical methods concentrate on
~ii ! and an incipient phase~iii !. Phase~ii ! is assumed to be
sufficiently long-lived so that an efficient energy exchan
can take place among the individual particles. This step
investigated by two classes of approach.

Class~1! procedures are rooted on a first implicit assum
tion that the system of nucleons, occupying a given availa
volume, is in a statistically stationary state; this state c
therefore be described by standard thermodynamic meth
the statistical mechanics of the system~microcanonical or
canonical ensembles! is then simulated by Monte Carlo tech
niques@18–21#, or, in the case of simple enough interactio
schemes, by semianalytical methods~cf. @1,4–7,22#!. Clus-
ters of nucleons are then isolated by various clus
identification algorithms~minimum spanning tree, etc! @23#,
and a distribution function is derived. The second impli
assumption of the method is that the observed cluster-
distribution in the stationary state is identical with the dist
bution of the nuclear fragments of step~iii !, and hence com-
parable with the distribution of real experiments.

Class ~2! procedures handle the dynamics of the in
vidual nucleons on the~less stringent than class 1! implicit
assumption that initially the nucleons of both colliding nuc
are randomly distributed over the given volume. The dyna
ics of the individual particles is then followed, for instanc
in the framework of CMD@2,24#. The system is found to
evolve towards a statistical equilibrium whose global pro
erties are obtained via time averaging. The methods proc
as under~1!.

Additional methods have been devised to deal with diff
ent energy ranges~cf. cascade models@25# at high energies,
hydrodynamic models@26#!.

Class~1! methods cannot be extended to treat steps~i! and
~iii !; the validity of the implicit assumptions required to tre
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step ~ii ! alone cannot be tested within this method. On
other hand the method of class~2! currently favored in the
literature, namely, CMD, could be adapted, in principle,
cover the full sequence~i!, ~ii !, and~iii !, provided only that
enough computer time be invested.

The CA method of this paper supplies an alternat
method of class~2! capable of handling the dynamics in
computationally efficient way.

B. Construction of the thermodynamic runs and tests

Our numerical experiments are organized as follows.
conformity with laboratory fragmentation experiments t
number of particlesA is set equal to 300 in the majority o
our CA simulations. A few test runs were carried out w
A5600 and 900 particles, in order to assess the influenc
the particle numbers on the fluctuations of the compu
thermodynamic variables.

We have explored particle number densitiesn in the range
of 0.03 to 0.10 particle/fm2. The range of the energiesE
extends from25000 to12500 MeV; it is examined with a
step of 50 to 100 MeV; the thermodynamic relations, a
temperature and pressure against energy are thus de
with some 100 directly computed points each. The num
of timestepsQ51200, withQ051000.

In our experiments two sets of rules Rpos, and Rvel de-
fining the construction of initial conditions are adopted.~a!
Rpos1: random uniform spatial distribution of the particle
over ‘‘volume’’ v; Rvel1: random uniform distribution of
states~equiprobability of all states!. For A5300, rules~a!
thus lead to spatially homogeneous high ene
('2500 MeV) configurations.~b! Rpos2: approximately cir-
cular subarea of v populated with a density n
51 particle/cell; Rvel2: 90% of the particles are in the re
state, 10% are uniformly distributed over the moving sta
Rules~b! produce low energy configurations, which are ma
roscopically inhomogeneous~except if the subregion coin
cides withv).

For given parametersA, v, and hencen, an initial con-
figuration is generated by~a! @~b!# whose energyE is com-
puted.

A first thermodynamic run is followed overQ51200
steps, and the temperature and pressure is obtained from
eraging over the last 200 steps. The thermodynamic run
defines one ‘‘thermodynamic point,’’A, v, E, T, andP.

A second thermodynamic run, with corresponding ‘‘the
modynamic point,’’A, v, E1DE, T8, and P8 is then pre-
pared adopting as initial condition the last configuration
the previous thermodynamic run in which one randomly
lected moving@rest# particle is stopped@set it in motion# if
the previous run corresponds to rules~a! @~b!#.

This procedure is continued until the energy range of
terest (25000 to 2500 Mev! has been explored.

Then a second sequence, a third sequence, etc. of the
dynamic runs is similarly prepared, starting with differe
initial ‘‘volumes,’’ v8, v9, . . . .

From the table of numerical results we can plot one th
modynamic variablex1 against a second thermodynam
variablex2 the remaining three variables being held const
(x1 , x2 , x3 , x4, andx55A, v, E, T, andP)
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The following test calculations were performed. In a fir
series of auxiliary experiments atT55 Mev and for n
'0.05 nucleon/fm2, we have verified that the time averag
are equivalent to phase-space averages. To this end we
lowed a single particle overQ52000 time steps, and we
kept track of the number of steps over which the particle w
in the rest stateQ r and in motionQm5Q2Q r , respec-
tively. Alternatively, we counted the total number of pa
ticles at rest and in motion,Ar and Am , respectively, in a
relaxed state at time step 2000. Under conditions of erg
icity, we should observe the equalityQ r /Q[Ar /A. Our ex-
periments indicate that we do satisfy the equality within
relative error of the order of 7–8%, consistent with the the
retically expected finite number fluctuations~of order 1/AA
'6%).

In the second place, at the average density of the inve
gated range,n'0.05 nucleon/fm2, we have verified in
greater detail that the ideal gas law holds forT.5 MeV.
Figure 3 displays theE-T behavior forA5300, 600, and 900
particles. In the range of positive internal energies, the
ergy shows an asymptotically linear dependence on temp
ture, which can be represented in the form

E5AT2Eo~A!; ~17!

the shift of the originEo(A) is an interaction contribution
The slopes obtained from a least squares fit are 298, 648,
974, respectively~ideal gas values: 300617, 600624, and
900630). Over the range of validity of the linear approx
mation @Eq. ~17!# the experimental points show virtually n
fluctuations. In contrast, at lower temperatures~range 1.4–2
MeV!, we observe large fluctuations. The potential contrib
tion is found to be approximately proportional to the numb
of particles,Eo(A)57.2A MeV. In the third place, we have
also examined theP-T relation at the density,n
'0.05 nucleon/fm2, which should be independent ofA in the
ideal gas range. The numerical results indicate that wit

FIG. 3. Caloric curve at high enough temperatures;n50.043;
A5300, 600, and 900.
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FIG. 4. A5300:~a! P-T relation at 7 densities 0.03<n<0.10 nucleon/fm2 ~all points experimental!, ~b! P-n relation at four temperature
~interpolation!, and~c! E-T relation at seven densities.
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the statistical fluctuations the three curves superpose and
pear to be practically independent of the number of partic
A over the full range. As anticipated in our general disc
sion, theP-T relation does exhibit a vertical asymptote a
critical temperatureTpair; at high temperatures it follows a
ideal gas law behavior; in the intermediate range, we do
observe a decrease in pressure with respect to the idea
law ~cf. our general discussion!; the interaction energy we
are working with seemingly does not exhibit this behavio
p-
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C. Thermodynamic results

The survey of the explored energy and density range
summarized in Figs. 4. All results of this section refer toA
5300 particles.

Figure 4~a! shows the equation of stateP5P(T,n) in a
pressure-temperature diagram, at seven densities,n50.031
~bottom curve!, 0.043, 0.055, 0.068, 0.081, 0.092, and 0.1
~top curve! particles/fm2 ~300 particles distributed ove
2704, 1996, 1521, 1225, 1024, 900, and 784 cells, resp
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tively!. All individual points of this diagram are actual com
puted points; no interpolations or smoothings have been
plied at this stage.

Each curve has a hyperbolic shape with one asymp
coinciding with the ideal gas contribution@Eq. ~16a!#, the
other corresponding to a constant temperature. Analytic
we can interpolate this behavior by an equation of the
lowing form:

P~T,n!5nT1Po~n!1
P1~n!

T

Tpair~n!
21

; ~18!

the functionsPo(n), P1(n), andTpair(n) are represented a
lowest-order polynomials:

Po~n!5 (
k51

4

Pokn
k, P1~n!5P11n, Tpair~n!5T1n,

~18a!

with the coefficients taking the values

Po1521.37, Po25240.2, Po35388,

Po452306, P1151.51, T1533.

In representation~18! the first and second contributions o
the right-hand side are the counterparts of the contributi
to the internal energy in the high-temperature regime@Eq.
~17!#; the third contribution describes the low-temperatu
asymptotics.

With the help of interpolation formula~18! we replot the
equation of state as a pressure-density curve, even thoug
numerically explored density range, 0.03 to 0.1 nucleon/f2,
was sparsely sampled by our actual thermodynamic ru
The results are shown in Figs. 4~b! ~temperatures: 2, 3, 4
and 5 MeV!. As transpires from the analytic representatio
at any temperatureT we have a corresponding critical de
sity, npair(T)50.03T @Eq. ~18!#, at which the nuclear matte
becomes incompressible~diverging pressure!.

Figures 4~c! show the caloric curve, energyE againstT,
for the seven densities~lowest density: top curve; highes
density: bottom curve!; all points of this curve are agai
computed points. We can interpolate these curves by an
lytic expression,

E~T,n!5AT1Eo~n!1
E1~n!

T

Tpair~n!
21

, ~19!

with

Ej~n!5Ejo1Ej 1n, j 50,1

Eoo52195, Eo1524.43104, ~19a!

E1o5217.7, E1152325;

Tpair(n) being defined in Eq.~18a!.
Equations~18! and~19! exhibit a singularity in the behav

ior of the pressure and the energy, at the critical tempera
T5Tpair(n). The latter roughly corresponds to an avera
p-

te
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kinetic energy per particle close to~but slightly lower than!
the binding energy of a particle in a stable pair Sec.~IV B !.

Although our numerical experiments are tw
dimensional, and hence, the results are not directly com
rable with real laboratory experiments, we wish to point o
that a plateau in theT-E curve has been reported in th
collisions of gold-gold and oxygen-silver ions@27#, in a tem-
perature range 4–6 Mev. In our numerical experiments
T-E curve likewise exhibits a plateau@the asymptote inE-T
relation ~19!#; the relevant temperature isTpair(n)'3 Mev
@Eq. ~18a!# for the higher densities we have considered. F
ure 5 shows the superposition of the experimental po
with our theoretical caloric curve atn50.03, 0.06, and
0.1 particle/fm2. Our theoretical result is thus not only qual
tatively consistent with this experimental result, but ev
quantitatively the theoretical and experimental orders
magnitude of the critical temperature range are compatibl
should be kept in mind, however, that an experimental de
mination of a nuclear temperature remains a controver
operation.

D. Formation of clusters

Figures 6 supply plots of the microscopic distribution
the particles over the available CA ‘‘volume’’v at different
densities and energies~or temperatures!.

~i! At the lowest density level investigated,n
'0.03 particle/fm2, and ~ii ! at a high enough temperatur
(T.1 Mev) or energy (E.0), all particles remain free. The
medium is seen to be uniformly populated at any time s
(.Q0). Snapshots taken at random time steps may exhib
few filamentary clusters of small size (s<5), but these struc-
tures dissolve at the following time step. The configuration
thus virtually an ideal gas.~b! As the temperature and energ
are lowered we finally observe stable, relatively small siz
energetically bound aggregates (s'30 at E'2700 MeV).

FIG. 5. Theoretical caloric curve~2D! E-T at n50.03, 0.06, and
0.10 ~E, rescaled, in MeV/nucleon andn in fm22) compared with
laboratory experiments~3D! @27#.
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The majority of the particles remain free, even at energ
,21000 Mev. The proper investigation of the thermal eq
librium is time consuming at these low densities, since c
lisions are too rare.

~ii ! At intermediate densities,n'0.05 particle/fm2, we
notice again that~a! at high energies and temperaturesE
'1300 andT'9 MeV, most particles remain free, althoug
we observe now longer filaments (s'10); statistically the
medium remains homogeneous.~b! As the energy and tem
perature are lowered, several large bound aggregates
velop, which may contain over 30 particles~at E
522000 Mev); typically, as the energy is further decreas
we observe a single large aggregate that finally tends
dominate. At this stage the macroscopic translation sym
try may appear as broken; in the limited context of our e
periments, the medium appears as inhomogeneous. How
in the strict thermodynamic context, that corresponds to
limits A→`, v→`, with n5A/v remaining finite, this is
not the case; in this infinite nuclear medium homogeneity
preserved on a small scale~even though this scale is now
larger than the original scale of homogeneity!. ~iii ! At the
highest densities investigated,n'0.1 nucleon/fm2, we ob-
serve~a! already large aggregates (s'30) at high energies
(E51500 MeV), which remain uniformly distributed ove
the lattice of cells and which are surrounded by clusters
smaller sizes. These clusters do not appear to be ener
cally bound. Pictures of the microscopic configuration at s
cessive steps in time show that they dissolve and that
clusters form. In fact, the ideal gas properties continue to
obeyed in spite of the apparent statistical equilibrium
tween cluster formation and dissolution.~b! At low energies
and temperatures a single dominating energetically stable
gregate is observed~with s.100 atE525000 MeV). The
latter is surrounded by stable clusters of all sizes. In term

FIG. 6. A5300: Microscopic distribution of nucleons over th
CA cells at different densities and energies; condensation ag
gates observed at high densities and low energies.
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nuclear physics, we now observe a thermodynamically sta
distribution of nuclear fragments of all sizes up to a ma
mum size.

The visualization of the spatial distribution of the particl
within the accessible ‘‘volume’’v ~Fig. 6! confirms that our
N-body system of nucleons exhibitstwo phases, as antici-
pated in our comments Sec.~IV B ! on general grounds. A
low densities and high enough temperatures the system
haves essentially like a perfect gas whose particles are
individual nucleons. At high densities and low enough te
peratures we observe a gas whose particles are aggrega
clusters of nucleons. Accordingly, at fixed temperatureT ~in
an appropriate range!, if we let the density increase from
low enough to a high enough value, we expect to encou
a critical densitynP(T) at which a phase transition from
gas phase to an aggregation phase takes place. In fact,
colation and aggregation-type phase transitions are w
known to occur at well-defined critical densities. Altern
tively, then, at fixed densityn, if the temperature drops from
a high enough to a low enough value, this transition occur
a critical temperatureTP(n); for dimensional reasons thi
critical value is of the order of the binding temperature o
particle in a pair@but slightly higher than the critical tem
peratureTpair(n) entering Eqs.~18! and ~19!#.

Close to the critical temperatureTpair(n) @Eqs. ~18! and
~19!# thermalization is very slow, so that the numerical r
sults may not be fully reliable; therefore, we have not inve
tigated the thermodynamics in the temperature rangeT
,Tpair(n) @or the density rangen.npair(T)#. Intuitively it
seems likely that the latter range corresponds to a conde
phase in which all clusters have merged into a single su
cluster.

The aggregation-type phase transition itself occurs a
higher temperature~or lower density!. The existence of the
latter is expected to manifest itself in the occurrence o
cluster distribution in the form of a power law.

E. The distribution of the fragments

Figures 7 show the cluster distributions atn
50.1 particle/fm2, namely N(s), the number of clusters
against s, the cluster size, in a log-log plot@energies
24400 MeV ~a!, 23600 MeV ~b!, and 2500 MeV~c!#. In
Figs. 7~a! and 7~b! the representative points are seen to f
low a straight line. Hence the distribution obeys a power la

N~s!}s2t ~20!

with t'1.35. This distribution compares favorably with th
2D results of discs obtained by Strachan and Dorso, who
t51.4 @23#.

At the higher energies~2500 Mev! a curvature become
noticeable in these plots. Likewise, if we consider lower de
sities, a curvature essentially survives at all energies inve
gated.

A fragment distribution conforming to Eq.~20! describing
the occurrence of aggregates of all sizes is the fingerprin
a percolation phase transition@12# or an aggregation-type
phase transition. The numerical results of Fig. 7 are indi
tive that the power-law behavior is exactly obeyed at so
energy intermediate between alternatives Fig. 7~a! and 7~b!,
i.e., close to the energy at which the caloric curve show

e-



.
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FIG. 7. Cluster distribution atn50.1; E524400 ~a!, 23600 ~b!, and12500 MeV ~c! ~14 runs!. Least-squares estimates oft ~a! full
s range~continuous line!, 1.32;s,10 ~dotted!, 1.40;s.10 ~dashed!: 0.80;~b! 1.45, 1.34, and 1.18 and~c! 0.85, 1.34, and 0.21, respectively
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bent @Fig. 4~c!#. On the other hand, under alternative F
7~c! we notice that there are no large aggregates; the clus
are not physically bound; they dissolve and new clust
form again.

Our numerical investigation thus supports the idea of
aggregation-type phase transition which is responsible
the nuclear fragment distribution in real~3D! laboratory ex-
periments. The fragments of heavy ion collisions are ind
found to obey a power law of exponentt52.2. The differ-
ence between the laboratory value and the value der
from our 2D numerical experiments is an effect of the
mensionality.

VI. CONCLUSION

In this paper we have developed a simple 2D cellu
automaton describingN-body systems. From the direct dy
namical results global statistical properties can be in
duced. In particular thermodynamic properties are easily
rived @Eqs.~16!#.

As an illustration the model has been applied to the pr
lem of heavy ion collisions in nuclear physics, with the r
sulting fragmentation of the nuclear matter. The model
sults, which are two-dimensional, are in qualitati
agreement with the real experiments~three-dimensional!.
They suggest an aggregation-type phase transition that d
mines the distribution of nuclear fragments, occurring a
o-

al
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low temperature. Since the direct purpose of this paper i
demonstrate the application of CA approaches toN-body dy-
namics rather than to phase transitions, we have not con
trated here on a precise analysis of the aggregation phen
enon. We plan to come back to this problem. For t
purposes of comparison of the CA approach with laborat
experiments we are currently carrying out a thre
dimensional extension of the method. We further plan to d
with the full collision process of the two ions, an approa
that should allow us to dispense with the thermodynam
assumptions implicit in the current treatment. In the lat
approach the distribution of the fragments can be read
directly from the numerical results without resorting to s
phisticated cluster identification methods. A major aim of t
extension will consist in a comparison of the dynamical
sults with the results obtained by Monte Carlo simulation
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